USN				Srinivas Institute of Technology Library, Mangalore	10ELE15/25
-	First	t/Seco		- . Degree Examination, June/Ju Ctrical Engineering	uly 2011

		Ba		ical Enginee		2011
Ti	me:	3 hrs.			Max.	Marks:100
No	2	1. Answer FIVE full 2. Answer all objective 3. Answer to objective	e type questions o type questions o	only in OMR sheet p	page 5 of the answ	ver booklet. valued.
1	a.	Choose the correct ar i) As per Ohms law A) V α I	• •	() I P		
		ii) A 2 Ω resistor i	s connected in se leat dissipated in	C) I a R ries with parallel co kWsec for 1 hour in	mbination of 10	Ω and 15 Ω rrent of 2 A
		iii) The flux linkage b				
			B) $\sqrt{L_1L_2}$		D) L ₁ /L ₂ .	
		iv) If the energy stor of coil is, A) 0.01 H		ules for a current of 2		
	b.	State and explain Kiro				(06 Marks)
	c.	Explain Fleming's ri machines.			d rule as applied	
	d.	Find the self inductant and 5 cm radius. A (1/r for paper = 1).	ce of a coil of 200 lso calculate ene	turns, wound on a progress of the transfer of	paper core tube of 2 current rises from	25 cm length n 0 to 5A (04 Marks)
2 -	a.	Choose the correct and i) Given $(8 + j6) \times (-43.1)$	-10 - j7.5), then t	the result in polar form $C = C = \frac{125}{+106.2}$		
		ii) An alternating em t = 1/200 sec is A) 150 V	f is given by e = B) 175 V	200sin314t. The ins		of emf at
		iii) An alternating cu current is,		$I = I_m \text{ Sin}2\omega t$. The	n frequency of the	
		A) ω/π Hz	B) 2ω/π Hz	C) $\omega/2\pi$ Hz		
		iv) The reactance of a new reactance is,	capacitor at 50 H	z is 5Ω . If the freque	ncy is increased to	100 Hz, the
		Α) 5 Ω	Β) 2.5 Ω	C) 10 Ω	D) 25 Ω.	(04 Marks)

c.		$Z_A = (10 -$	$j8)\Omega$, Z_B	= (9 -	j6)Ω &	$Z_{C} = ($	$3 + j2)\Omega$.	series with C. The The voltage across veen them.
								(08 Marks)
	01 .1				$x = x_1 x_2$			

3	a.	Choose	the	correct	answer
~	•••		w	COTTOCE	and we.

- i) When power factor is 0.5, the wattmeter reading is such that A) $w_1 = w_2$ B) w_1 is +ve, w_2 is -ve C) w_1 is +ve, $w_2 = 0$ D) $w_1 = 2 w_2$.
- ii) The relation between line and phase quantities in a delta connection is

A)
$$E_{\ell} = \sqrt{3} E_{ph}$$
, $I_{\ell} = I_{ph}$

B)
$$E_{\ell} = E_{ph}$$
, $I_{\ell} = \sqrt{3} I_{ph}$

C)
$$E_{\ell} = \sqrt{3} E_{ph}$$
, $I_{\ell} = \sqrt{3} I_{ph}$

D)
$$E_{\ell} = E_{ph}$$
, $I_{\ell} = I_{ph}$.

- iii) The angle between line voltage and phase voltage for a balanced star connected circuit is A) 30° B) $30^{\circ} \pm \phi$ C) 60° D) 120° .
- iv) In a 3 ϕ system, if the instantaneous value of phase R and Y are +60V and -40V respectively, then instantaneous voltage of phase B is

A) -20 V

B) 40 V

C) 120 V

D) none of the above.

(04 Marks)

b. What are the advantages of 3\$\phi\$ AC systems over 1\$\phi\$ AC system?

(04 Marks)

- Show that two wattmeters are sufficient to measure 3φ power for balanced 3φ power system.
 (06 Marks)
- d. Three coils each of impedance 20 60° are connected in star to a 3φ, 400 V, 50 Hz supply. Find the reading on each of the two wattmeters connected to measure the power input. (06 Marks)

4 a. Choose the correct answer:

i) Under no load condition, the revolution of the disc due to kinetic energy of an energy meter can be blocked by

A) Brake magnet

B) Electromagnet

C) Creeping hole with Brake magnet

- D) Copper shading band.
- ii) The minimum fusing current of a fuse wire is 2.1 A and fusing factor is 1.1. Then, the rated carrying current of the fuse element is,

A) 2.2 A

- B) 2.31 A
- C) 1.909 A
- D) 0.5238 A.
- iii) Coke can be used as a sandwich between salt of an earthing system, to

A) by pass the current

B) avoid melting of the salt

C) improve conductivity

- D) to hold moisture content.
- iv) When the pointer of an indicating instrument comes to rest in the final deflection position, then
 - A) Only controlling torque acts
- B) Only deflecting torque acts

C) Both torques act

D) None of these.

(04 Marks)

- b. With the help of a neat diagram, describe the constructional features and working of a dynamometer type wattmeter. (06 Marks)
- c. With a neat sketch, explain any three types of wiring.

(06 Marks)

d. What are the precautions to be taken to prevent electric shock?

(04 Marks)

PART – B

а	. Choose the correct answer:
	 i) The yoke of a DC machine is made of A) Silicon steel B) Soft iron C) Aluminum D) Cast steel.
	 ii) Carbon brushes are used in a DC machine because A) Carbon lubricates and polishes the commutator B) Contact resistance is decreased C) Carbon is cheap D) none of these.
	iii) The efficiency of a DC generator means its A) Electrical efficiency B) Overall efficiency C) Mechanical efficiency D) None of the above.
	iv) A DC motor is still used in industrial applications because it is A) Cheap B) Simple in construction C) Provides fine speed control D) none of these (04 Marks)
b	Explain with a neat sketch the constructional features of a DC machine and mention the function of each part. (05 Marks)
C	
đ	
a.	Choose the correct answer: i) A transformer transfers electrical energy from primary to secondary usually with a change in
	A) frequency B) power C) voltage D) time period.
	ii) when the supply frequency of a transformer is doubled then the hystersis losses A) remain same B) doubled C) reduced by 50% D) hystersis loss equal to eddy current loss.
	iii) Regulation and efficiency of a transformer should be respectively A) high, high B) high, low C) low, high D) low, low
	iv) The full load copper loss for a transformer is 800 W, then the copper loss at half the full load is
	A) 400 W B) 800 W C) 200 W D) 1600 W (04 Marks)
b.	What are the various types of losses and how to overcome these losses in a transformer? (08 Marks)
c.	The max. efficiency at full load and upf of a 1 \(\phi, 25 \) KVA, 500/1000 V, 50 Hz, transformer is 98%. Determine its efficiency at i) 75% load, 0.9 pf ii) 50% load, 0.8 pf iii) 25% load, 0.6 pf. (08 Marks)

7	a	i) The stater of an alternator is identical to that of a
		A) DC generator B) three phase induction motor C) single phase induction motor D) none of these.
		ii) The field winding of an alternator is excited. A) DC B) AC C) Both DC and AC D) none of these
		iii) High speed alternators are driven by A) diesel engine B) hydraulic turbines C) steam turbines D) none of these.
		iv) The disadvantages of a short pitched coils in an alternator is that A) harmonics are introduced B) waveform become non sinusoidal C) voltage round the coil is reduced D) none of the above. (04 Marks)
	b.	Derive an expression for emf equation of an alternator. What is the necessity of considering pitch factor and distribution factor for emf equation? (08 Marks)
	c.	A 12 pole, 500 rpm, \wedge connected alternator has 60 slots, with 20 conductors per slot. The flux per pole is 0.02 wb and is distributed sinusoidally. The winding factor is 0.97. Calculate i) frequency ii) phase emf iii) line emf. (08 Marks)
8	a.	Choose the correct answer: i) The difference between synchronous speed and actual speed is 100 rpm and the synchronous speed is 1500 rpm, then the value of slip is A) 2% B) 10% C) 6.66% D) 15%.
		ii) External resistance is connected to the rotor of a 3\phi phase wound induction motor in order to
		A) reduce starting current B) confector current C) as a star connected load D) none of these.
		iii) When the rotor of a 3\phi induction motor is blocked, the slip is A) zero B) 0.5 C) 0.1 D) 1.
		 iv) Phase wound induction motors are less extensively used than squirrel cage induction motors because, A) slip rings are required on the rotor circuit B) rotor windings are generally star connected C) they are costly and require greater maintenance D) none of the characteristics.
	h	(V4 IVIZI RS)
	b.	Explain the working principle of a 3\$\phi\$ induction motor and give reasons for "An induction motor can not run at synchronous speed". (06 Marks)
,	c.	Define slip. Derive an expression for frequency of rotor current. (04 Marks)
•	d.	An 8 pole alternator runs at 750 rpm, and supplies power to a 6 pole, 3\$\phi\$ induction motor which runs at 970 rpm. What is the slip of the induction motor? (06 Marks)

S rinivas	Institute	of	Technology
Li	rary, Ma	ang	alore

	 				 				ergiary, mangatore
USN									06ELE15/25
	 	L	L	L	 L	L	I	L	

First/Second Semester B.E. Degree Examination, June/July 2011

		Bas	ic Electrica	al Engineering	·
Time:	3 hrs	3.			Max. Marks:100
	2. <i>An</i>	swer all objective i	type questions only	ing at least TWO from in OMR sheet page 5 heets other than OMR	of the answer booklet.
			<u>PART</u>	<u> </u>	
c.	i) ii) iii) iv) Stat Two supp a res An	A) is a simple cir. B) draws less cur. C) results in redu. D) makes the operation of their resistances at A) R ₁ = 2R ₂ . The main advantation A) Change the main advantation of 2A/sec, the A) 8V and explain Kircher resistors R ₁ = 2500 foly. The voltage drows air cored solenoid.	ices are connected in reuit rent aced power loss eration of appliance as rated for the same rerespectively R_1 as $R_2 = 2R_1$ age of temporary managnetic flux hysteresis loss the between two coil ten emf induced in the R_1 and R_2 and $R_2 = 4000 \Omega$ and $R_3 = 4000 \Omega$ and $R_4 = 4000 \Omega$ and $R_5 = 4000 \Omega$ and $R_6 = 4000 \Omega$. Find the sum of the of 500 turns has a	nd R ₂ , them, C) R ₂ = 4R ₁ Ignets is that we can B) Use any magn D) None of these s is 4H. If the current in the other coil is C) 0.5V tric circuits. a are joined in series and are measured successively the two readings. a mean length of 50 cr	of 200 W and 100 W. If D) $R_1 = 4R_2$ netic material n one coil changes at the D) $0V = (04 \text{ Marks})$ (06 Marks)
2 a.	Cho i)	oose your answers for The inductive read	ctance of an inducto	r in a d.c. circuit is	
		A) ωL	B) $\frac{1}{\omega}$ L	C) zero	D) infinity
	ii) iii)	i = $I_m \sin (\omega t - \pi/6)$ A) $\pi/3$ The voltage drop respectively. Then) and $v = V_m \sin(\alpha B) \pi/2$ across R, L and G the magnitude of a	t + $\pi/3$). The voltage lea C) $\pi/4$ C in RLC series circuit	ge are represented by ds cament by D) π/6 is 200V, 85V and 100V
	iv)	A) 205 V The active and an	B) 35 V	C) 25V	D) None of these magnitude. The circuit
	**/	power factor is	parent power of at	a.c. on our are equal II	i manegraphotice. The chedit

C) 0.8

D) 1

(04 Marks)

B) 0.5

A) 0.707

b.	Define RMS and average value of an alternating quantity and hence show that form factor for a sine wave is 1.11 (08 Marks)							
c.	Two circuits with the impedances of $Z_1 = 10 + j15 \Omega$ and $Z_2 = 6 - j8 \Omega$ are connected in parallel. If the supply current is 20A, determine the current and power dissipated in each branch. (08 Mark							
•	Cha		ha fallowing .					
a.	i)	ose your answers for t		ous values of phase R	and V an +60V and			
	1)		en the voltage of phas	-	una 1 un 1007 una			
		A) -20V	B) 40V	C) 120V	D) None of these			
	ii)	,	•	connected load of RΩ/j	•			
	.*	current is	•	·	•			
		A) 2.5 A	B) 1A	C) 1.725 A	D) None of these			
	iii)	In a 3\psi circuit, if loa	d power factor is decr	eased, then the line curr				
		A) decreases	B) increases	C) remains the same	•			
	iv)		onnected system, the	angle difference between	en line voltages and			
		phase voltages are	7) 500	c) 4000	5) ! !			
		A) 30°	B) 60°	C) 120°	D) in phase			
b.	Shor	w that two wattmeter's	s are sufficient to mes	asure power in the three	(04 Marks) - phase halanced star			
υ.		nected circuit with the			(06 Marks)			
c.				ith respect to power tria	• • • • • • • • • • • • • • • • • • • •			
d.	A de	elta connected load co	nsists of a resistance of	of $10~\Omega$ and a capacitan	•			
				the load. Find the line				
	-	power consumed by th			(06 Marks)			
	•							
a.	Cho	ose your answers for t	the following:					
	i)	Dynamometer type i	nstruments are used to	o measure parameters of				
		A) DC only	-	C) both DC and AC	D) None of these			
	ii)	•	licating instruments a	-	m) a a			
		A) Copper	B) Aluminium	C) Silver	D) Soft steel			
	iii)	The fusing material		T) T 1/1 '	. 1 * 1 * .* *.			
		A) Low melting poi		B) Low melting point				
		C) high melting poi	-	D) high melting poin				
	iv)	• •	the voltage measured to B) <5 V	between phase and grou C) 230 V	na is D) None of these			
		A) 0 V	ע כ∼נם	C) 230 V	(04 Marks)			
b.	Defi	ine earthing for electri	cal appliances and ne	ed of it. With a neat ske	•			
U.		hing.	FF		(08 Marks)			
c.			lain the construction	and working principl	e of a single phase			
		ction type energy met			(08 Marks)			

3

PART – B

5	a.	Choose your answers for the following:									
		The armature of a D.C. machine is made of									
		A) Silicon steel B) Wrought iron									
		C) Cast steel D) Soft iron									
) High voltage dc machines use windings									
		A) Lap B) Wave									
		C) Either lap or wave D) Combination of both									
		i) A DC motor is still used in industrial applications because it									
		A) is cheap B) is simple in construction									
		C) provides fine speed control D) None of these									
		v) The torque developed by a d.c. motor is directly proportional to									
		A) flux per pole X armature current B) armature resistance X applied voltage									
		C) armature resistance X armature current D) applied voltage X number of poles (04 Marks)									
	b	explain the characteristics of a dc shunt and dc series motor for torque versus armature									
	٥.	current and speed versus armature current. (08 Marks)									
	c.	A 440 V dc shunt motor takes an armature current of 20 A and runs at 500 RPM. The									
		ance of the armature is 0.6Ω . If the flux is reduced by 30% and the torque is increased									
	en de la companya de										
		by 40% what are the values of armature current and speed? (08 Marks)									
6	a.	Choose your answers for the following:									
•	٠.) A transformer is an efficient device because it									
		A) is a static device B) uses inductive coupling									
		C) uses capacitive coupling D) uses electric coupling									
		i) The flux in the core of a single phase transformer is									
		A) purely alternating one B) purely rotating one									
		C) partly alternating and partly rotating D) constant flux									
		ii) A transformer has 200 W at iron loss at full load. The iron loss at half the full load									
		would be									
		A) 50 W B) 100 W									
		C) 400 W D) 200 W									
		(v) The efficiency and regulation of a transformer should be respectively									
		A) High, high B) High, low									
		C) Low, high D) Low, low (04 Marks)									
	b.	What are the various types of losses occur in transformer and how to minimize them?									
		(06 Marks) Define regulation of a transformer. (04 Marks)									
	c. Define regulation of a transformer.										
	d. A 600 kVA single phase transformer has an efficiency of 92% both at full										
		full load at UPf. Determine its η at 75% of full load at 0.9 pf lag. (06 Marks)									

7	a.		oose your answers for the following:	· _								
		i)	The stator of an alternator is identical to the									
			A) DC generator	B) Three phase induction mo	otor							
		::)	C) Single phase induction motor	D) Rosenberg generator								
		ii)	The a.c. armature winding of an armature is									
			A) Always star connected	B) Generally delta connected								
		:::7	C) Star – delta connected The greed at which a 6 male alternation of the start of	D) None of these								
		iii)	The speed at which a 6 pole alternator shape second is	ould be driven to generate 5	0 cycles pe							
				D) 1000 DD) (
			A) 1500 RPM C) 500 RPM	B) 1000 RPM								
		iv)		D) None of these								
		14)	The rating of an armature is expressed in A) kW	D) 11D								
			C) KVA	B) HP								
	h	Doris		D) KVAR	(04 Marks)							
	0.	to he	ve an expression for emf equation of an arm	ature and also discuss why K _p	and K _d have (08 Marks)							
	c.	to be considered in the equation.										
	11 54, w connected attentator arriver at 700 kg ivi is required to beliefale a li											
		Calc	460 V at 60 Hz on open circuit. The stator has 2 slots/pole/ph and 4 conductor/slot. Calculate the number of poles and the useful flux per pole if the winding factor if 0.966.									
		Calci	urate the number of poles and the userul flux	per pole if the winding factor i								
					(08 Marks)							
8	a.	Cho	ose your answers for the following:									
		i)	· ·									
		,	A) $N = (S - 1) N_s$	B) $N = (1 - S) N_s$								
		•	C) $N = (1 + S) N_s$	D) $N = SN_s$								
		ii)	When the rotor of a 3\$\phi\$ induction motor is bl									
			A) 0	B) 0.5								
			C) 0.1	D) 1								
		iii)	The direction of rotation of field in a 3\$\phi\$ indo									
		/	A) Number of poles	B) Magnitude of supply voltage	na.							
			C) Supply frequency	D) Phase sequence of supply								
		iv)	A wound rotor is mainly used in applications	s where	voitage							
		,	A) High starting torque is required	B) Speed control is required								
			C) Constant speed is required	D) None of these	(04 Marks)							
	b.	With	a neat sketch, explain the working principle	of a 3h squirrel cage induction	o viviains)							
	•	discus	ss the significance of slip.	or a 54 squirrer cage muuchon								
	c.	A 4 p	ole, 50 Hz induction motor has s slip of 1% a	t no load. When operated at fi	(08 Marks)							
		slip is	2.5 %. Find the change in speed from no loa	d to full load	(08 Marks)							
		-	6F Hom no lou		(OO MAINS)							

* * * * *